

InterfaceInterfaceInterfaceInterface SpecificationSpecificationSpecificationSpecification

Datamaxx Message Processing Protocol
®

(DMPP-2020)

DMPP-2020
®
 Interface Specification

Version 8.1

DMPP-2020

This document contains information, specifications and diagrams of a highly

proprietary and confidential nature. This information is intended only for use

by the organization, to which it was distributed directly by Datamaxx

Applied Technologies, Inc. Under no circumstances is there to be any

duplication, distribution or other release of the information contained in this

document to any other organization or person, by any means, without

written authorization from Datamaxx Applied Technologies, Inc.

www.Datamaxx.com

DMPP-2020 Interface Specification Version 8.1

Datamaxx Applied Technologies, Inc.

This document, or any portion thereof, may not be modified, reproduced, sold, or

redistributed without the express written permission of Datamaxx Group, Inc.

This document is provided to you “AS IS” and Datamaxx Group, Inc. d/b/a/ Datamaxx Applied

Technologies, Inc. provides no warranty as to the results you may obtain from using it.

Datamaxx™, the Datamaxx logo, Datamaxx Message Processing Protocol®, DMPP-2020®,

Datamaxx Standard Embedded Object®, DSEO-2020® and Datamaxx Applied Technologies, Inc.

Leading Law Enforcement Technology® are trademarks of Datamaxx Applied Technologies, Inc.

Any other product names used within this document are the trademarks of their respective

holders.

Copyright © 2015 Datamaxx Applied Technologies, Inc. All rights reserved.

DMPP-2020 Interface Specification Version 8.1

Datamaxx Applied Technologies, Inc.

Published by:

Datamaxx Group, Inc. d/b/a

Datamaxx Applied Technologies, Inc.

2001 Drayton Drive

Tallahassee, FL 32311-7854

(850) 558-8000

www.Datamaxx.com

Revision History:

Version Date Notes

Version 0 Aug 1996 1) Original Issue

Version 1 Oct 1996 1) Added Levels of Service

2) Changed references to “Sequence” numbers to “validation”

numbers to avoid confusion with application message

sequence numbers

3) Edited in order to clarify some portions, without changing

meanings or specification

4) Added Trademark notices and formal specification name

Revision 2 Jun 1997 1) Clarified use of Network Byte Order in all structures, and

defined the Start and Stop Patterns

2) Minor editorial and grammatical changes

Revision 3 Sept 1997 1) Registered Copyright – TX 4-624-223

2) Modified references to NCIC

3) Changed block length field to positive value

4) Added a maximum buffer size specification. Changed

format specification for the validation field.

Revision 4 Sept 1997 1) Clarified block structure and length field definitions

Revision 5 Sept 1998 1) Editorial changes defining that the implementer must

choose the encryption algorithm

2) Editorial changes to the maximum overall data length field

3) Updated Datamaxx address and telephone number

Revision 6 Jun 2000 1) Added ability to send messages in multiple blocks:

increased maximum block length and data length; and

added new function codes

2) Redefined original concept of “Status Codes” to “Status

Codes for Request Messages”. The latter allows an

indication of whether or not a message contains a binary

object, and if so, the type.

Revision 7 Feb 2004 Updated format

Revision 8 Feb 2005 Added support for 256-bit AES encryption

Revision 8.1 Apr 2005 Added clarification regarding 256-bit AES encryption

DMPP-2020 Interface Specification Version 8.1

Datamaxx Applied Technologies, Inc. i

TABLE OF CONTENTS

1.0 INTRODUCTION .. 1

2.0 CONCEPTS ... 3

3.0 EXTENDED MESSAGE HEADER ... 5

4.0 EXTENDED MESSAGE HEADER FORMAT ... 6

5.0 SERVICE LEVELS ... 10

6.0 IMPLEMENTATION NOTES ... 11

APPENDIX A – ENCRYPTION KEY BOOK FORMAT .. 13

DMPP-2020 Interface Specification Version 8.1

Datamaxx Applied Technologies, Inc. 1

1.0 INTRODUCTION

The purpose of this paper is to define a specification that can be implemented to provide

robust message handling in the Law Enforcement Environment. As the transition to modern

communications protocols continues, new problems and challenges are presented to

developers. This is especially true with “Open Systems”, in which there are components from

various vendors, all of which must operate in harmony.

With legacy systems, one vendor had control of processing, from the end-user keyboard to the

host system, and thus could control all standards, and could implement necessary functionality

to ensure that all messages were delivered reliably.

With Open Systems and diverse vendors, functionality tends to be implemented as a series of

layers, with information being passed up and down between layers. Complicating this is the fact

that the layers may be implemented as a series of disparate free running processes, in which

data is passed back and forth. Therefore, an application may send data through several layers

and processes about which it has no knowledge. Each process or layer may acknowledge to the

previous process or layer that the data was successfully processed; however, error messages

are often not communicated to previous processes, the change, and the originating application

may not be aware of an error. Thus, the need for “application-to-application” or “end-to-end”

acknowledgment.

Complicating the situation is that Open Systems are truly open, as they are designed to allow

easy interconnection. This immediately provides points of access that can be used for

unauthorized or abusive use of a system.

A further factor is that new protocols are “peer-to-peer” and do not provide a continuous

status monitoring (as is the case with “master slave” type protocols). This can lead to situations

in which an application can send a message to a destination that cannot process it. Since there

is no immediately available status, error indications may not be provided for several minutes

(or at all) and the sending application will not be aware of the situation.

Consider the following scenario:

1) Host prepares a message for transmission

2) Host passes the message to communications subsystem

3) Communications subsystem passes message to communications controller

4) Subsystem sends message immediately to destination, but is not aware if any

intermediate devices (e.g. bridges or routers) are inoperative

5) Remote application crashes before reading buffer, or operator powers system off

DMPP-2020 Interface Specification Version 8.1

Datamaxx Applied Technologies, Inc. 2

In this scenario, the host application would consider that the messages have been correctly

processed, when indeed it was not. Furthermore, many messages may have been sent and

buffered for a remote application that never processes them. There are also many other

potential points of failure that can leave the host in a state assuming a message was delivered,

when it was not actually delivered.

In order to eliminate these potential points of failure, a structure must be defined that can be

used universally. The approach defined herein uses a Message Header processing to achieve full

end-to-end confirmation of all messages.

The processing strategy is known as the “Datamaxx Message Processing Protocol (DMPP-

2020
1

)”.

1
 Datamaxx Message Processing Protocol and DMPP-2020 are registered trademarks of Datamaxx Applied

Technologies, Inc.

DMPP-2020 Interface Specification Version 8.1

Datamaxx Applied Technologies, Inc. 3

2.0 CONCEPTS

In developing the message header processing, many factors were considered including:

� Compatibility with NCIC designs

� Compatibility with State designs

� Full message delivery confirmation

� Communications Protocol Independent

� Applicable to all processing platforms

� Programmer friendly

� Support for security issues

� Support for data encryption

� Features can be configured to meet different requirements

� Flow control is automatically provided to avoid flooding of a target system

The design that evolved, after much research, involves the implementation of a special header

in each message packet. This header contains control fields that can be used to provide all

functionality, as needed. The header can also be defined as optional in order to allow remote

systems to be converted as available, rather that requiring a “big bang” conversion. This header

will be referred to as the “Extended Message Header” throughout this paper.

A discussion of each of the concepts is warranted, in order to provide background and rationale

for the design.

1) Compatibility with NCIC designs – This design leverages off the structure proposed for

the NCIC-2000 system, in order to reduce research and development time. It is not an

exact copy.

2) Compatibility with State designs – This design allows the Extended Message Header to

be placed in front of existing message formats, with no requirement to change those

formats. This alleviates the requirement to modify existing processing applications.

3) Full Message Delivery Confirmation – The Extended Message Header provide both

positive and negative confirmation of message delivery. For negative delivery

confirmation, a reason code is provided.

DMPP-2020 Interface Specification Version 8.1

Datamaxx Applied Technologies, Inc. 4

4) Communications Protocol Independent – Although the obvious protocol that this

specification can be applied to is TCP/IP, it is actually protocol independent. It can

operate on any binary transparent protocol, ranging from serial links (e.g. mobile

communications via CPDP IP packets) to mainframe protocols (e.g. LU 6.2).

5) Applicable to all Processing Platforms – This design is compatible with all processing

platforms. Careful sizing and alignment of all data fields achieve this in order to avoid

alignment and size specification errors that are generated by some processors.

6) Programmer Friendly – The design guards against assumptions made by various

compilers. For example, some compilers will automatically initialize data structures to

null values, or just plain junk. This can lead to subtle processing flaws. Thus, this

specification does not allow any command, directive or response code that is all null

values, and requires that all values be verified. It is also programming language

independent. All Extended Message Header processing is symmetrical with respect to

direction (inbound and outbound).

7) Support for Security Issues – The Extended Message Header provides for full

authentication of all connections, including dynamic re-verification of connections at

random intervals.

8) Support for Data Encryption – The Extended Message Header provides for full

encryption of the data portion of messages. This allows a full software solution to be

implemented, independent of all communications hardware. Dynamic key update and

control is supported.

9) Features can be configured to Meet Different Requirements – The features can be

configured to meet the needs of a specific system. For example, the Extended Message

Header can be implemented using a few of its capabilities, and then more features can

be activated as required.

10) Levels of Implementation – The specification can be implemented as “levels of service”,

depending on what options are selected. thus, it can be adapted to many different

needs and environments.

11) Flow Control – The Extended Message Header can provide a natural flow control, if

desired by the implementer.

DMPP-2020 Interface Specification Version 8.1

Datamaxx Applied Technologies, Inc. 5

3.0 EXTENDED MESSAGE HEADER

The Extended Message Header is a structure that is inserted in a cleanly delineated message

block. The general structure of the message block is detailed in the table shown below.

FIELD SPECIFICATION

Start Pattern (STAP) \xFF\x00\xAA\x55

Block Length 32-bit singed integer (see note below)

Encompasses the whole packet, including the Start Pattern, Block

Length field itself, Extended Message Header, Data (if any present)

and Stop Pattern

Header Extended Message Header (defined in Section 4)

Data Variable length data

Stop Pattern (STOP) \x55\xAA\x00\xFF

For consistency across platforms, all values in the header are stored in “Network Byte Order”.

This order places the most significant byte first, descending to the least significant byte reading

to the right. This is contrary to method used on some Intel platforms (notably the 80X6 family)

and thus, the implementation must handle this situation as required.

The minimum block size is 28 characters, which can occur when the Extended Message Header

length is 16 and there is no data present. The maximum block size is 2,147,483,647 (2
31

 – 1).

Thus, the value of the Block Length field must never be less than 28 or more than

2,147,483,647.

DMPP-2020 Interface Specification Version 8.1

Datamaxx Applied Technologies, Inc. 6

4.0 EXTENDED MESSAGE HEADER FORMAT

The Extended Message Header has the following required format:

FIELD SPECIFICATION

Header Length 16-bit signed integer

Function Code 16-bit signed integer

Validation Code 32-bit unsigned integer

Data Length 32-bit signed integer

Status Code 16-bit signed integer

Destination 16-bit signed integer

The Extended Message Header has the following optional extension for encryption:

FIELD SPECIFICATION

Length 16-bit signed integer

Request Type 16-bit signed integer

Key ID 32-bit unsigned integer

In the following tables, all numbers are expressed as decimal integers. They can be converted to

other number systems (e.g. octal or hex) as required. Note how the use of zeros is consistently

avoided. Each field is discussed in detail, as follows:

1) Header Length encompasses all the header data, including the length field. it will be 16

if an Encryption Header is not included. If an Encryption Header is included, Header

Length will be at least 20 with the actual value depending on the type of encryption

specified in the header.

2) Function Code defines the processing path of the message. Currently defined values

include:

VALUE DESCRIPTION

1 Data message with no acknowledgment, final block

2 Data message with acknowledgment, final block

3 Data message with no acknowledgment, more blocks to follow (see note

below)

4 Data message with acknowledgment, more blocks to follow (see note

below)

17 Positive acknowledgment to data message (Status Code is set to

“Successful receipt of data message”)

18 Negative acknowledgment to data message (Error is defined in the Status

Code field)

33 Request status of system

34 Response to status request (Status is defined in the Status Code field)

DMPP-2020 Interface Specification Version 8.1

Datamaxx Applied Technologies, Inc. 7

VALUE DESCRIPTION

49 Send Coded Message 1

50 Send Coded Message 2

65 Positive response to Coded Message 1

66 Positive response to Coded Message 2

Note: Function Codes 3 and 4 are used to indicate that the message will be sent in

multiple blocks with Function Codes 1 and 2 used to indicate the last block. Each block in

such messages must use successive values as the Validation Code.

3) Validation Code defines a number that is used to create a unique identification for each

message, and will be returned on its corresponding acknowledgment. Its format is up to

the implementer. This value may be all zeros, as it is not inspected but simply returned

to the requester intact.

4) Data Length defines the length of the actual data portion of the message. It is used for

redundancy checking. it must be zero for status and status response messages. The

maximum value is 2,147,483,619 (2
31

 – 1 –28).

5) Status Code for Request Messages contains the status code that can be included in

request messages. Currently defined values include:

VALUE DESCRIPTION

1 Message does not contain binary object

2 Message contains binary object in NCIC transaction format

3 Message contains binary object in NCIC response format

4 Message contains binary object in DSEO-2020
2
 format

Note: Any message that can contain a binary object in any of the supported formats can

contain multiple binary objects but they must all be in the same format.

6) Status Code for Response Messages contains the status code that can be returned in

responses. They should be used only with responses – never part of request messages

(i.e., status codes are not “piggybacked” onto a request). The code returned will depend

on the type of request received (e.g. a write request with acknowledgment, or an

explicit request for status). Currently defined values include:

VALUE DESCRIPTION

1 Successful receipt of data message

17 Permanent (i.e., non-recoverable) error occurred (e.g. disk failure)

18 Temporary (i.e., recoverable) error occurred (e.g. printer out of paper)

19 Logical error occurred (e.g. too many messages received too quickly, and

2
 DSEO-2020 is a registered trademark of Datamaxx Applied Technologies, Inc.

DMPP-2020 Interface Specification Version 8.1

Datamaxx Applied Technologies, Inc. 8

VALUE DESCRIPTION

thus a queue containing acknowledgments filled up)

20 Message length exceeds maximum, message will be discarded

33 Queried destination is available and ready

34 Queried destination is available, but not ready (e.g. printer has buffer

space, but is out of paper)

35 Queried destination is not available and not ready

49 Invalid function code received

50 Invalid (or non-existent) destination received

51 Invalid Extended Message Header format or length received

52 Function not supported

7) Destination defines a logical destination. This permits a packet to be addressed to

different logical units, and effectively creates a cluster at a location. The actual

definition is up to the implementer and the configuration. This permits logical units to

be defined for specific purposes (e.g. a destination for “Hit Confirmation” messages),

and permits implementation of message priorities. The value of 0 is invalid. The value of

“-1” is considered a broadcast to all defined destinations.

8) Encryption Header Length defines the length of the optional encryption header. A

length of zero is invalid. If this optional value is included, it will be at least four (4) with

the actual value depending on the type of encryption specified in the header as defined

below.

9) Encryption Header defines the parameters to be used to decrypt the data. The

encrypted data itself is included in the Data field of the message. The format depends

on the Encryption Type field as defined below. Note that the Encryption Header can

specify that the Data field in the message is not encrypted.

FIELD SPECIFICATION

Header Length 16-bit signed integer

 16-bit signed integer

Defines how data is encrypted:

 0 – No encryption

 1 – 128-bit FIPS-197, CBC mode, PKCS7 padding

 2 – 256-bit FIPS-197, CBC mode, PKCS7 padding

Parameters Variable length depending on Encryption Type as defined below

Specifies the parameters needed to decrypt the Data field in

the message

a) Encryption Type 0 – The contents of the Data field are not encrypted and,

consequently, there are no associated parameters.

DMPP-2020 Interface Specification Version 8.1

Datamaxx Applied Technologies, Inc. 9

b) Encryption Type 1 – The contents of the Data field are encrypted using parameters

defined below with the National Institute of Standards and Technology (NIST)

Advanced Encryption Standard (AES) as defined in the Federal Information

Processing Standard (FIPS) 197, with the following options:

(1) 128-bit keys

(2) 128-bit encryption blocks

(3) Cipher Block Chaining (CBC) Mode with an explicit Initialization Vector (IV)

(4) PKCS7 padding

(5) The encryption key should be derived from the book of keys identified by

Book ID, using the specific key identified by Key ID. See Appendix A for the

format of key books.

PARAMETER SPECIFICATION

Book ID 16-bit signed integer

Key ID 16-bit signed integer

CRC 16-bit signed integer

Standard cyclic redundancy check (CRC-16) value of the

clear-text with initial value set to zero

IV 16-bytes

Initialization Vector randomly selected for each message

c) Encryption Type 2 – Same as Type 1 with 256-bit keys

d) The Encryption Header should only be used with Function Codes 1, 2, 3 and 4.

e) If DMPP-2020 blocking (Function Code of 3 or 4) is used, each block will be

independently encrypted and decrypted using the CRC and IV included in that block.

f) The following errors will be NAK’d in the same manner as non-encrypted errors

using the indicated status codes:

VALUE DESCRIPTION

65 Invalid encryption header

66 Invalid book ID

67 Invalid key ID

68 CRC error

DMPP-2020 Interface Specification Version 8.1

Datamaxx Applied Technologies, Inc. 10

5.0 SERVICE LEVELS

The DMPP-2020 specification allows for service levels. A service level defines that functionality

that has been activated for a given endpoint on a communications network. The following

service levels are defined:

1) Level 1 provides the functionality for handling message header functions from 1 through

47 (as they may be defined). This functionality encompasses guaranteed delivery of

messages and full status checking, but does not include authentication or encryption.

2) Level 2 provides the functionality as described in Level 1 and adds the functionality for

system authentication (function codes 49 through 79 as they may be defined).

3) Level 3 provides the functionality as described in Level 2 plus adds the encryption

options via the extensions for encryption.

DMPP-2020 Interface Specification Version 8.1

Datamaxx Applied Technologies, Inc. 11

6.0 IMPLEMENTATION NOTES

The following notes are presented to give an insight into how the Extended Message Header

may be applied to various functions.

1) Integer Values. In this specification all integers are positive signed values, unless

otherwise noted.

2) Destination does not have to replace existing header structures. It is meant to augment

them. This technique permits many logical units to be addressed by a single host

address (e.g. a single TCP/IP address). This eliminates large control tables, and their

associated maintenance (e.g. holes in firewalls). The application may still process

existing headers (e.g. those used on a BiSync 2780 line).

3) Flow Control. By use of the “Write with Acknowledge” function, flow control may be

achieved. The application can be structured to allow any number of messages to be

outstanding at any time, subject only to the limits of the receiver. If the limit is set to 1,

automatic flow control is achieved.

4) Keep Alive Timer provides full keep-alive support, at the application level. A keep-alive

probe is a packet with a Request Status Function code and no data length. If an

appropriate Response to Status Request is returned, then the connection is intact. Note

that this can also be used to temporarily suspend traffic by responding with a Status

Code 34 (temporarily unavailable).

5) Coded Messages are used to authenticate connections. Their use is specific, as follows:

a) A session requesting a connection provides a predictive string of data (e.g. a

logical name) and encodes it in such a way that the receiver can decode it. This

can be done by using a known element (e.g. system name, date, circuit number,

telephone number, etc.) and encoding it using a Huffman coding, or other

encoding process. It sends it as Coded Message 1 to the receiver.

b) The receiving session encodes a similar string (that is why it must be predictive)

and compares it to the received string. If a match is found, a response code of 65

is sent, with no data. If no match, the receiver is silent (Why tell the crook how

he failed?).

c) Either side of the session may send a Coded Message 2 request at any time. The

Coded Message 2 has a random data string as its data portion. The receiver then

adds another predictive string of data to the coded data, re-encodes it and

returns it as a response of code 66 to the sender.

DMPP-2020 Interface Specification Version 8.1

Datamaxx Applied Technologies, Inc. 12

d) The sender of the Coded Message 2 analyzes the response. If valid, processing

continues (there is no response). If invalid, the connection is terminated due to

suspected invasion of the system.

e) The exchange of Coded Message 2 functions may occur at any time, thus

creating a keep-alive, as well as continually re-authenticating connections.

f) The encoded data in the Coded Message 2 may also be used as the encryption

key by inserting the optional encryption header.

6) Configuration Control. The features listed may be made configurable. For example,

some systems may not support encryption, while others may allow many messages to

be queued before acknowledgment. Other systems may require coded messages. These

should all be implemented via service levels, not by specific option enabling techniques.

7) Precise Error and Status Reporting. The response codes permit isolation of errors

clearly and cleanly. For example, there are codes for both “Invalid Function” and

“Unsupported Function”. This permits an interface to query a peer interface to

determine what level of functionality is supported.

DMPP-2020 Interface Specification Version 8.1

Datamaxx Applied Technologies, Inc. 13

APPENDIX A – ENCRYPTION KEY BOOK FORMAT

Encryption keys will be distributed in the format defined below and referenced from within

DMPP encryption headers as defined in Section 4 of this document. The key book will be an

ASCII text file consisting of a Book ID record, Keys record and some number of Key records.

RECORD DESCRIPTION

Book ID First record: book identifier

Format: “BOOK:” followed by ID

ASCII integers (0<Book ID<32K)

Keys Second record: number of keys

Format: “KEYS:” followed by number of keys in book

ASCII integers (0<Keys<32K)

Key Subsequent records: keys

Format: Key ID followed by “:” followed by key

Key ID: 5 ASCII integers with leading zeros (0<Key ID<32K)

Key: 32 ASCII-encoded hex characters for 128-bit keys; 64 characters for

256-bit keys

Key IDs must start at one and be sequential and contiguous

Example key book file with 10 keys:

BOOK:23

KEYS:10

00001:B8944C0CDB06DC5FD0F58C09749A44DD

00002:9FE3BF381FA0911C40464FF6422A66B5

00003:A32917E4C64EAA618BED08E6A8875640

00004:3F0657274A82FA861C7C9D03115208A8

00005:D13A752BE81C67735192E174DC4A4105

00006:C43745073D9CE581A6F1E95273F2058E

00007:86DDABF576B268D868397AE54428395E

00008:73AB9C2C3F10C671120B8837BC6EB1AB

00009:0664FCB6B456F1A51216F87F3664828F

00010:8EA7B1CB7235C08CC5FCAEE61FCB6022

