CONFIRMATION OF CANNABINOIDS BY LIQUID CHROMATOGRAPHY – TANDEM MASS SPECTROMETRY

27.1 POLICY

This test method may be used to confirm the presence of Δ⁹-THC (THC) and its metabolite, 11-nor-9-carboxy-Δ⁹-THC (THCCOOH) in biological samples and other submitted evidence. Quantitative results obtained through the use of this method will only be reported within the validated dynamic range. Reporting of results following the application of this method will be contingent upon a thorough review and acceptance of quality control data and the qualification of individual results under the criteria for acceptance.

Any adjustments or deviations from the procedures below must be approved by the State Toxicologist, a Manager, or a Supervisor, and appropriately documented in the batch file.

27.2 PURPOSE

The purpose of this standard operating procedure (SOP) is to provide technical direction for the identification and quantitation of THC and THCCOOH present in biological specimens and other submitted evidence. This procedure will serve as the laboratory document describing sample preparation, instrumental analysis, data analysis and criteria for acceptance for batch data from method validation.

27.3 PRINCIPLE

The targeted compounds and internal standards are isolated from whole blood, serum, plasma, urine and other biological samples or evidence by the use of liquid-liquid extraction (LLE). Following LLE, the specimens, now termed extracts, are injected into a high performance liquid chromatograph (HPLC) where they are separated between a liquid mobile and liquid stationary phase. Each compound exits the HPLC at a reproducible time which is termed its retention time.

The HPLC is coupled to a tandem mass spectrometer (MS-MS) detector equipped with an atmospheric pressure electrospray ionization source. As each ionized compound is drawn into the high vacuum region of the instrument, selected-ion and multiple-reaction monitoring is used to measure the mass-to-charge ratios of each compound and its related fragments. Multiple-point, internal standard calibration is used to generate a calibration curve. The concentration of any THC or THCCOOH identified in a sample is determined from its calibration curve.

27.4 SPECIMENS

27.4.1 The specimen/sample volume is 1 mL for all specimen types.

27.4.2 Specimens/samples include whole blood, serum, plasma, urine, tissue homogenate and non-biological aqueous solutions or solid material.

27.4.3 Dilutions of specimens/samples may be analyzed at the Forensic Scientist’s discretion; however, this should be done in addition to testing the standard specimen/sample volume, unless sample quantity dictates otherwise.

27.4.4 Analysis of larger specimen/sample volumes must be approved and documented.

27.5 REAGENTS, MATERIALS AND EQUIPMENT
27.5.1 REAGENTS

27.5.1.1 Acetic acid, glacial

27.5.1.2 10% Acetic acid

Add 10 mL of concentrated acetic acid to 80 mL DI H₂O in a 100 mL flask. Dilute to 100 mL with DI H₂O and mix. The solution is stored in a glass bottle at room temperature and expires one year from the date of preparation. Adjustments to final volume are permitted as long as the proportions are maintained.

27.5.1.3 Acetonitrile (ACN)

27.5.1.4 Certified blank blood (specific to THC assay)

27.5.1.5 Deionized water (DI H₂O)

27.5.1.6 Ethyl acetate

27.5.1.7 Extraction solvent, hexanes:ethyl acetate 9:1 (for use on date of preparation only)

Add 90 mL hexanes to a glass flask. Add 10 mL ethyl acetate and mix. Adjustments to final volume are permitted as long as proportions are maintained.

27.5.1.8 Formic acid, concentrated

27.5.1.9 0.1% Formic acid

Add 1 mL of concentrated formic acid to 800 mL DI H₂O in a 1 L flask. Dilute to 1 L with DI H₂O and mix. Filter this solution prior to use on the HPLC. The solution is stored in a glass bottle at room temperature and expires one year from the date of preparation. Adjustments to final volume are permitted as long as the proportions are maintained.

27.5.1.10 Hexanes

27.5.1.11 Methanol (MeOH)

27.5.1.12 Reconstitution solution, 50:50 ACN:DI H₂O (for use on date of preparation only)

Add 2 mL of acetonitrile to 2 mL of DI H₂O in a glass tube, cap and mix. Adjustments to final volume are permitted as long as proportions are maintained.

27.5.1.13 Sodium hydroxide (NaOH), concentrated, 10N

27.5.2 MATERIALS

27.5.2.1 Autosampler vials (glass with integrated conical inserts) and caps

27.5.2.2 Disposable 16 x 125 mm tubes with safety closures

27.5.2.3 Disposable screw-cap tubes or centrifuge tubes with safety closures
27.5.2.4 Disposable pipette tips
27.5.2.5 Disposable glass transfer pipettes
27.5.2.6 HPLC Column, Agilent Poroshell 120 EC-C18, 2.1x75 mm, 2.7µM particle size, or equivalent
27.5.2.7 Laboratory glassware (graduated cylinders, flasks)
27.5.2.8 pH indicating paper
27.5.2.9 Volumetric glassware (flasks)

27.5.3 EQUIPMENT

27.5.3.1 Agilent HPLC (1100/1200 series or equivalent)
27.5.3.2 Agilent MS-MS with API-ES source (6410, 6420, or equivalent)
27.5.3.3 Calibrated, adjustable air-displacement pipettes
27.5.3.4 Centrifuge
27.5.3.5 Evaporator (Caliper LS, formerly Zymark, TurboVap)
27.5.3.6 Heating block, oven, dry bath or wet bath
27.5.3.7 Rotary mixer
27.5.3.8 Vortex mixer

27.6 STANDARDS, CALIBRATORS AND CONTROLS

27.6.1 STANDARDS

27.6.1.1 Reference materials (referred to interchangeably in this method as stock standards) are used for the preparation of stock or working standards which, in turn, are used to produce calibrators, positive controls and the working internal standard.

27.6.1.2 Certified reference materials (CRM’s) for preparation of working standard and stock internal standard (IS) are purchased from an approved reference material supplier and include the following:

a. Δ^9-THC: 1.0 mg/mL
b. Δ^9-THC-d₃: 0.1 mg/mL
c. 11-nor-9-carboxy-Δ^9-THC: 1.0 mg/mL
d. 11-nor-9-carboxy-Δ^9-THC-d₃: 1.0 mg/mL
e. 11-nor-9-carboxy-Δ^9-THC glucuronide 0.1 mg/mL

27.6.1.3 Working standard (10, 50 ng/µL)

a. Using calibrated pipettes, measure 500 µL of THC and 2.5 mL of THCCOOH CRM’s into a 50 mL class-A volumetric flask.
b. Add MeOH to the flask to the designated volume.
c. The final concentration of the working standard is 10 ng/µL THC and 50 ng/µL THCCOOH. The working standard is stored in the freezer in an amber bottle and expires one year from the date of
preparation. Volumes may be adjusted provided that proportions remain constant.

27.6.1.4 Stock Internal standard (1, 5 ng/µL)

a. Using a calibrated pipette, measure 250 µL THC-d₃ and 125 µL THCCOOH-d₃ CRM's into a 25 mL class-A volumetric flask.
b. Add MeOH to the flask to the designated volume.
c. The final concentration of the stock internal standard is 1 ng/µL THC-d₃ and 5 ng/µL THCCOOH-d₃. The stock internal standard is stored in the freezer in an amber bottle and expires one year from the date of preparation. Volumes may be adjusted provided that proportions remain constant.

27.6.1.5 Working Internal standard (0.1, 0.5 ng/µL)

a. Using a calibrated pipette, measure 2.5 mL stock internal standard into a 25 mL class-A volumetric flask.
b. Add MeOH to the flask to the designated volume.
c. The final concentration of the working internal standard is 0.1 ng/µL THC-d₃ and 0.5 ng/µL THCCOOH-d₃. The working internal standard is stored in the freezer in an amber bottle and expires one year from the date of preparation. Volumes may be adjusted provided that proportions remain constant.

27.6.2 CALIBRATORS

27.6.2.1 Calibrators are prepared in certified blank blood at the time of analysis using the working standards. The preparation of the calibrators is detailed in 27.7 SAMPLE PREPARATION. If necessary, calibrators may be prepared in alternate matrices provided that the matrix has been previously determined to not contain any of the compounds tested for by this procedure.

27.6.3 CONTROLS

27.6.3.1 Negative Control

a. At least one negative whole blood control is tested with every batch. The negative control is prepared using certified blank blood.
b. When testing different sample types, wherever possible, include a negative control prepared from that matrix. (For example, when analyzing whole blood and urine samples the batch shall include at least one negative whole blood control and at least one negative urine control.)

27.6.3.2 Positive Controls

a. Three positive whole blood controls are tested with every batch. The positive controls are prepared using certified blank blood to which the designated volume of control working standard has been added.
b. Control stock standards are obtained from an approved reference material supplier.
c. The control stock standards must be either a different lot number or from a different supplier to those used in producing the working standard. If the same lot or supplier must be used, the working control standard should be prepared by someone other than the person that prepared the working standard.

d. The preparation of the positive whole blood controls is detailed in 27.7 SAMPLE PREPARATION. Alternatively, quality control personnel may provide in-house positive controls.

e. When testing different sample types, wherever possible, include at least one positive control prepared from that matrix.

27.7 SAMPLE PREPARATION

27.7.1 Label a clean 16 x 125 mm tube for each member of the test batch. (i.e. calibrator, control, case sample)

27.7.2 Add 2 mL DI H₂O to each tube.

27.7.3 Add 1 mL of certified blank whole blood into each of the seven calibrator tubes, the positive control tubes and the negative control tube(s).

27.7.4 Prepare a 1:10 dilution of the working standard. (1, 5 ng/µL)

 a. Using a calibrated pipette, combine 0.1 mL of the working standard with 0.9 mL of ACN or MeOH in a labeled tube.
 b. Cap and vortex mix. This dilution shall be disposed of after calibrator preparation.

27.7.5 Prepare a 1:100 dilution of the working standard. (0.1, 0.5 ng/µL)

 a. Using a calibrated pipette, combine 0.1 mL of the 1:10 dilution with 0.9 mL of ACN or MeOH in a labeled tube.
 b. Cap and vortex mix. This dilution shall be disposed of after calibrator preparation.

27.7.6 Spike the calibrators according to the following table using the working standards.

<table>
<thead>
<tr>
<th>Calibrator Description (THC/THCCOOH)</th>
<th>Volume Added (µL)</th>
<th>Working Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrator 1 (1.0/5.0 ng/mL)</td>
<td>10</td>
<td>0.1/0.5 ng/µL</td>
</tr>
<tr>
<td>Calibrator 2 (2.0/10 ng/mL)</td>
<td>20</td>
<td>0.1/0.5 ng/µL</td>
</tr>
<tr>
<td>Calibrator 3 (5.0/25 ng/mL)</td>
<td>50</td>
<td>0.1/0.5 ng/µL</td>
</tr>
<tr>
<td>Calibrator 4 (10/50 ng/mL)</td>
<td>100</td>
<td>0.1/0.5 ng/µL</td>
</tr>
<tr>
<td>Calibrator 5 (25/125 ng/mL)</td>
<td>25</td>
<td>1.0/5.0 ng/µL</td>
</tr>
<tr>
<td>Calibrator 6 (50/250 ng/mL)</td>
<td>50</td>
<td>1.0/5.0 ng/µL</td>
</tr>
<tr>
<td>Calibrator 7 (100/500 ng/mL)</td>
<td>100</td>
<td>1.0/5.0 ng/µL</td>
</tr>
</tbody>
</table>

27.7.7 Prepare a 1:10 dilution of the control working standard. (1, 5 ng/µL)

 a. Using a calibrated pipette, combine 0.1 mL of the control working standard with 0.9 mL of ACN or MeOH in a labeled tube.
 b. Cap and vortex mix. This dilution shall be disposed of after control preparation.

27.7.8 Prepare a 1:100 dilution of the control working standard. (0.1, 0.5 ng/µL)
a. Using a calibrated pipette, combine 0.1 mL of the 1:10 dilution with 0.9 mL of ACN or MeOH in a labeled tube.
b. Cap and vortex mix. This dilution shall be disposed of after calibrator preparation.

27.7.9 Spike the positive controls according to the following table using the control working standards.

<table>
<thead>
<tr>
<th>Control Description (THC/THCCOOH)</th>
<th>Volume Added (µL)</th>
<th>Working Control Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control 1 (3.0/15 ng/mL)</td>
<td>30</td>
<td>0.1/0.5 ng/µL</td>
</tr>
<tr>
<td>Control 2 (20/100 ng/mL)</td>
<td>20</td>
<td>1.0/5.0 ng/µL</td>
</tr>
<tr>
<td>Control 3 (80/400 ng/mL)</td>
<td>80</td>
<td>1.0/5.0 ng/µL</td>
</tr>
</tbody>
</table>

27.7.10 If in-house positive controls are being used, transfer 1 mL of each into their labeled tubes.

27.7.11 Sample 1 mL of each case sample into its respective tube.

27.7.12 Add 100 µL of the working internal standard solution to each tube and briefly vortex-mix. Final concentration of the internal standard is 10 ng/mL THC-d3 and 50 ng/mL THCCOOH-d3.

27.7.13 Add 800 µL of 10% acetic acid and vortex-mix.

27.7.14 Add 8.0 mL of extraction solvent (hexanes:ethyl acetate, 9:1) to each tube.

27.7.15 Cap the tubes and rotate for 30 minutes.

27.7.16 Centrifuge at 2500 rpm for 15 minutes to achieve separation.

27.7.17 Transfer organic layer to appropriately labeled centrifuge or screw cap tubes.

27.7.18 Evaporate samples to dryness at 40°C.

27.7.19 Reconstitute samples with 100 µL of reconstitution solvent (50:50 ACN:DI H2O) and briefly vortex-mix. If necessary, centrifuge the tubes for 2 minutes at 2000 rpm to collect the extracts at the bottom of the tubes.

27.7.20 Transfer the extracts to labeled glass autosampler vials with integrated conical inserts and cap.

URINE EXTRACTION

Urine specimens require hydrolysis of glucuronide conjugates prior to sample preparation, according to the following procedure:

1. Label a clean 16 x 125 mm tube for each member of the urine test batch.
2. Sample 1 mL blank urine into each of the two calibrator tubes, the positive glucuronide control tube, and the negative control tube.
3. Spike urine calibrators at Cal 1 (5.0 ng/mL THCCOOH) and Cal 5 (125 ng/mL THCCOOH) concentrations, using the working standard dilutions, as described in 27.7.6.
4. Prepare a 1:10 dilution (10 ng/µL) of the 0.1 mg/mL THCCOOH glucuronide stock CRM.
• Combine 0.1 mL of the CRM with 0.9 mL ACN or MeOH in a labeled tube. Cap and vortex-mix. The dilution shall be disposed of after control preparation.

5. Prepare a 1:10 dilution (1.0 ng/µL) of the 10 ng/µL solution.
• Combine 0.1 mL of the 10 ng/µL dilution with 0.9 mL ACN or MeOH in a labeled tube. Cap and vortex-mix. The dilution shall be disposed of after control preparation.

6. Add 100µL of the prepared dilution to the glucuronide positive control tube.

7. Sample 1 mL of each urine case sample into its respective tube.

8. Add 100 µL of the working internal standard solution to each tube and briefly vortex-mix. Final concentration of the internal standard is 50 ng/mL THCCOOH-d₃.

9. Add 40 µL of 10N NaOH to each tube.

10. Verify pH is >10 using pH indicator paper.

11. Cap tubes and briefly vortex-mix.

12. Incubate the tubes for 20 minutes at 60°C.

13. Remove from heat and cool to room temperature.

14. Add 25 µL glacial acetic acid to neutralize pH.

15. Briefly vortex-mix.

27.8 INSTRUMENTAL PARAMETERS

The instrumental parameters can be found in Appendix A. Prepare a sequence table by first setting the data path in MassHunter to the date of the test. After entering all vial locations, sample descriptions, comments and/or lot numbers in the sequence table ensure that the method listing in the table is THC for each line.

27.9 DATA ANALYSIS

27.9.1 Analysis of the batch data is conducted using the instrumental data analysis software in MassHunter.

27.9.2 Quantitative calculations are generated by internal standard, multi-point, linear regression with a 1/a² (inverse of concentration squared) weighting factor. The calibration curves are updated using the calibrator results for the batch; no historical calibration curves are permitted.

27.9.3 For urine confirmation, a two-point calibration curve (equal weighting, origin included) is generated, using urine calibrators at Cal 1 and Cal 5 concentrations.

27.9.4 Printed reports for each vial in the batch are generated for review along with the updated calibration curves.

27.9.5 Technical review of the batch is conducted according to the criteria listed below.

27.10 CRITERIA FOR BATCH ACCEPTANCE

If the analysis of the batch meets the criteria listed below, the results for the specimens are accepted.

27.10.1 Calibrators and calibration curves

27.10.1.1 Chromatographic peaks for THC, THCCOOH and internal standards shall appear symmetrical (i.e. no co-elution, split peaks, or shoulders).
27.10.1.2 Retention times shall be within ±2% and ion ratios shall be within ±20% of those in calibrator 4. These are inclusive ranges.

27.10.1.3 Quantitative results for THC and THCCOOH in each calibrator shall be within ±20% of their target values with the exception of calibrator 1 which shall be within ±25% of their targets. These are inclusive ranges. For target concentrations <10 ng/mL, result comparisons will use values truncated after the first decimal place in units of ng/mL. For target concentrations ≥10 ng/mL, result comparisons will use whole integer values in units of ng/mL.

27.10.1.4 The calibration curves for THC and THCCOOH shall have correlation coefficients ≥0.99.

27.10.1.5 The failure to meet any of these criteria for one compound does not invalidate the acceptability of another compound.

27.10.1.6 For urine confirmation, the two-point curve must meet criteria described in 27.10.1.3.

27.10.2 Controls

27.10.2.1 The negative control(s) shall not identify THC or THCCOOH above its limit of detection. Identification is based on a) acceptable retention time matching, b) distinct peaks present for all selected ions, and c) acceptable ion ratios. Negative urine control(s) shall not identify THCCOOH above its limit of detection, based on above criteria.

27.10.2.2 Positive controls

a. Chromatographic peaks for THC, THCCOOH and internal standards shall appear symmetrical.

b. Retention times shall be within ±2% and ion ratios shall be within ±20% of those in calibrator 4. These are inclusive ranges.

c. Quantitative results for THC and THCCOOH in each control shall be within ±20 of their target values. These are inclusive ranges. For target concentrations <10 ng/mL, result comparisons will use values truncated after the first decimal place in units of ng/mL. For target concentrations ≥10 ng/mL, result comparisons will use whole integer values in units of ng/mL.

d. The failure to meet any of these criteria for one compound does not invalidate the acceptability of another compound.

e. All positive controls must meet these criteria for THC, in order for THC to be reported quantitatively from the batch. At least two positive controls must meet these criteria for THCCOOH, in order for THCCOOH to be reported quantitatively from the batch.

f. For the positive glucuronide urine control, retention times shall be within ±2% and ion ratios shall be within ±20% of those in the 125 ng/mL THCCOOH urine calibrator. The control is considered acceptable if recovery of THCCOOH is demonstrated, and criteria in 27.10.2.2.a. is met.
27.11 CRITERIA FOR CASE SAMPLE ACCEPTANCE

If the criteria for batch acceptance have been satisfied, the results of individual case samples are deemed suitable for reporting if the following criteria are met.

27.11.1 Any chromatographic peak for THC or THCCOOH and internal standards shall appear symmetrical.

27.11.2 The retention times for THC, THCCOOH and internal standards are ±2% and the ion ratios are within ±20% of those in calibrator 4. These are inclusive ranges.

27.11.3 The quantitative results for each identified compound must be within the dynamic range of the test method.

27.11.4 When dilutions of case samples are tested, the quantitative result(s) before multiplication shall be within the dynamic range of the test method.

27.11.5 Urine samples are suitable for qualitative reporting of THCCOOH if criteria in 27.11.1 is met, the retention time is within ±2% and ion ratios are within ±20% of those in the 125 ng/mL THCCOOH urine calibrator, and the calculated value is ≥ 5.0 ng/mL THCCOOH.

27.12 REPORTING

27.12.1 Results are reported in units of nanograms per milliliter (ng/mL).

27.12.2 Results are truncated to no more than two significant figures for reporting.

 a. Example 1: THC is measured at 7.85 ng/mL.

 b. The result is truncated to 7.8 ng/mL (two significant figures) and reported.

 c. Example 2: THCCOOH is measured at 122.52 ng/mL.

 d. The result is truncated to 122 ng/mL (three significant figures), but reported as 120 ng/mL (two significant figures).

27.12.3 When multiple dilutions are analyzed, the smallest dilution within the dynamic range is reported.

27.12.4 When confirmed using this assay, urine results are reported qualitatively.

27.13 METHOD PERFORMANCE

27.13.1 Limit of detection: THC 0.5 ng/mL

 THCCOOH 2.5 ng/mL

27.13.2 Lower limit of quantification: THC 1.0 ng/mL

 THCCOOH 5.0 ng/mL

27.13.3 Dynamic range: THC 1.0 – 100 ng/mL

 THCCOOH 5.0 – 500 ng/mL
27.13.4 Upper limit of quantification: THC 100 ng/mL
THCCOOH 500 ng/mL

27.14 TRACEABILITY

27.14.1 Traceability of the reference materials to SI units is provided through the certificate of analysis provided by the approved reference material supplier.

27.15 REFERENCES

27.15.1 A. Black, B.E. O'Reilly, in-house development.

27.15.4 Pat Friel, Agilent Technologies, Inc.

27.15.5 Virginia Department of Forensic Sciences, Cannabinoid Quantitation/Confirmation method.
APPENDIX A
INSTRUMENTAL PARAMETERS

LIQUID CHROMATOGRAPH

<table>
<thead>
<tr>
<th>Gradient Elution</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rate</td>
<td>0.5 mL/min</td>
</tr>
<tr>
<td>Solvent A</td>
<td>0.1% Formic acid</td>
</tr>
<tr>
<td>Solvent B</td>
<td>ACN</td>
</tr>
<tr>
<td>Initial Composition</td>
<td>60% A, 40% B</td>
</tr>
<tr>
<td>Hold time</td>
<td>1 min (40% B)</td>
</tr>
<tr>
<td>1-7 min % B increased to 95%</td>
<td></td>
</tr>
<tr>
<td>Hold time</td>
<td>3 min (95% B)</td>
</tr>
<tr>
<td>10-10.5 min % B decreased to 40%</td>
<td></td>
</tr>
<tr>
<td>Re-equilibration</td>
<td>2.0 minutes</td>
</tr>
<tr>
<td>Column Temp</td>
<td>40°C</td>
</tr>
<tr>
<td>Autosampler</td>
<td></td>
</tr>
<tr>
<td>Injection Volume</td>
<td>10.0 µL</td>
</tr>
<tr>
<td>Injection flush-port</td>
<td>Active</td>
</tr>
<tr>
<td>Flush-port time</td>
<td>5 sec</td>
</tr>
<tr>
<td>Flush-port solvent</td>
<td>75:25/ MeOH:DI H₂O</td>
</tr>
</tbody>
</table>

MASS SPECTROMETER

<table>
<thead>
<tr>
<th>Ion mode</th>
<th>(+) MRM</th>
<th>Nebulizer gas</th>
<th>Nitrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak width</td>
<td>0.05 min</td>
<td>Nebulizer pressure</td>
<td>40 psi</td>
</tr>
<tr>
<td>Dwell time (Time Segment 2)</td>
<td>50 msec</td>
<td>Drying gas</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>Dwell time (Time Segment 3)</td>
<td>100 msec</td>
<td>Drying gas flow</td>
<td>10.0 L/min</td>
</tr>
<tr>
<td>Time segment 1 (Time 0 min)</td>
<td>To Waste</td>
<td>Drying gas temp</td>
<td>350°C</td>
</tr>
<tr>
<td>Time segment 2 (Time 4.0 min)</td>
<td>To MS (EMV +400)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time segment 3 (Time 6.8 min)</td>
<td>To MS (EMV +400)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time segment 4 (Time 8.5 min)</td>
<td>To Waste</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signals</th>
<th>MRM Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>THCCOOH-d₃</td>
<td>348.2→330.2/302.2</td>
</tr>
<tr>
<td>THCCOOH</td>
<td>345.2→299.2/193.1</td>
</tr>
<tr>
<td>THC-d₃</td>
<td>318.2→196.1/123</td>
</tr>
<tr>
<td>THC</td>
<td>315.2→193.1/123</td>
</tr>
</tbody>
</table>
LIST OF CHANGES

<table>
<thead>
<tr>
<th>Revision Date</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Confirmation Method: Cannabinoids by LC-MSMS

Approved by the State Toxicologist

Effective Date: 5/8/14

TCc12727 Revision – Original