CALIBRATION REPORT FOR
DIGITAL THERMOMETER

WASHINGTON STATE PATROL
S/N: 091797 ID #SPXM02309
Report Number: C263302
CALIBRATION REPORT FOR DIGITAL THERMOMETER

The instrument or device identified below was examined and calibrated in ICL's metrology laboratory following the calibration procedure referenced below. This calibration fulfills the requirements of ISO/IEC 17025:2017, 'General Requirements for the Competence of Testing and Calibration Laboratories' and ANSI/NCSL Z540-1-1994, 'Calibration Laboratories and Measuring and Test Equipment - General Requirements'.

CLIENT
WASHINGTON STATE PATROL
2700 116TH STREET NE
MARYSVILLE, WA 98271
Purchase order number: NOT AVAILABLE
Submitted by: WASHINGTON STATE PATROL
ICL internal reference (SO): 377121

DATES
Date received: 10-04-2019
Date calibrated: 10-08-2019 Date report issued: 10-11-2019

UUT (Unit Under Test) INFORMATION
Manufacturer: GUTH LABS INC.

Model No: 4300
Serial No: 091797 ID #SPXM02309
Description: 165mm X 4.05mm STEM

Manufacturer's specified temperature range: 29.5 to 38.5 °C
Calibrated range (limited calibration): 33 to 35 °C
Sensor immersion: AT LEAST 93mm RECOMMENDED

Readout resolution: 0.01 °

Engineering units: degrees Celsius (°C) or degrees Fahrenheit (°F), user selectable.

NOTE: The accuracy tolerance for this device is the manufacturer's specification. Please see the 'Tolerance' column which appears in the 'Results of Calibration' table on the next page.

RESULTS OF PHYSICAL EXAMINATION
The condition of this device was satisfactory with no visually apparent defects, unless noted below. Minor cosmetic defects are generally not noted unless they are judged to impact the usability of the device.

Technician's comments: UUT needs a full battery for calibration. A new 9 volt battery was installed prior to calibration.

CALIBRATION PROCEDURE
ICL Procedure 04, which references relevant elements of ASTM E77, ASTM E220, ASTM E644 and ASTM E2393.

LABORATORY ENVIRONMENTAL CONDITIONS
Temperature: 23 °C +/- 5 °C, Relative humidity: between 30% and 80%
RESULTS OF CALIBRATION

AS FOUND

<table>
<thead>
<tr>
<th>Nominal Temp</th>
<th>Standard Rdg.</th>
<th>UUT Reading</th>
<th>Correction</th>
<th>Tolerance</th>
<th>Accept Limit*</th>
<th>P/F/Ind</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.00 °C</td>
<td>33.001 °C</td>
<td>33.00 °C</td>
<td>0.00 °C</td>
<td>±0.020 °C</td>
<td>±0.013 °C</td>
<td>Pass</td>
<td>±0.016 °C</td>
</tr>
<tr>
<td>34.00 °C</td>
<td>33.998 °C</td>
<td>34.00 °C</td>
<td>0.00 °C</td>
<td>±0.020 °C</td>
<td>±0.013 °C</td>
<td>Pass</td>
<td>±0.016 °C</td>
</tr>
<tr>
<td>35.00 °C</td>
<td>34.997 °C</td>
<td>35.00 °C</td>
<td>0.00 °C</td>
<td>±0.020 °C</td>
<td>±0.013 °C</td>
<td>Pass</td>
<td>±0.016 °C</td>
</tr>
</tbody>
</table>

The 'As Found' values were determined to be within tolerance, and no adjustment of this device was required or undertaken.

AS LEFT

<table>
<thead>
<tr>
<th>Nominal Temp</th>
<th>Standard Rdg.</th>
<th>UUT Reading</th>
<th>Correction</th>
<th>Tolerance</th>
<th>Accept Limit*</th>
<th>P/F/Ind</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.00 °C</td>
<td>33.001 °C</td>
<td>33.00 °C</td>
<td>0.00 °C</td>
<td>±0.020 °C</td>
<td>±0.013 °C</td>
<td>Pass</td>
<td>±0.016 °C</td>
</tr>
<tr>
<td>34.00 °C</td>
<td>33.998 °C</td>
<td>34.00 °C</td>
<td>0.00 °C</td>
<td>±0.020 °C</td>
<td>±0.013 °C</td>
<td>Pass</td>
<td>±0.016 °C</td>
</tr>
<tr>
<td>35.00 °C</td>
<td>34.997 °C</td>
<td>35.00 °C</td>
<td>0.00 °C</td>
<td>±0.020 °C</td>
<td>±0.013 °C</td>
<td>Pass</td>
<td>±0.016 °C</td>
</tr>
</tbody>
</table>

GUARD BANDING

ISO/IEC 17025:2017 requires, in Section 7.8.6.1., that, "When a statement of conformity to a specification or standard is provided, the laboratory shall document the decision rule employed." One valid way of complying with this requirement is applying a 'guard band' to the device's tolerance. The guard band is calculated as a function of the test uncertainty ratio (TUR), the ratio of the tolerance of the UUT to the measurement uncertainty. Basically, the smaller the uncertainty is relative to the tolerance, the smaller the guard band. A TUR of 5:1 typically results in a guard band of zero, or nearly zero. A 4:1 TUR produces a guard band very close to zero. A 3:1 TUR results in a modest guard band. And so forth. As TUR declines, the guard band becomes larger. The use of the guard band in the decision process is designed to reduce the probability of a false acceptance (PFA), or a failure, to 2% or less. The method and equations we use for calculation of the guard band are as per Method 6 of ANSI/NCSL Z540.3

The 'Accept Limit(s) are calculated by subtracting the guard band from the tolerance. The Accept Limit is essentially a new tolerance, for this calibration only, which we use to make a declaration of Pass, Fail, or Indeterminate, as explained below:

Pass The measured value falls within the interval described by the test point plus or minus the Accept Limit.
Fail The measured value falls outside the interval described by the test point plus or minus (the tolerance + the guard band).
Ind (Indeterminate) The measured value is indeterminate, falling in that statistical 'grey area, too close to permit a credible determination. It is statistically and metrologically imprudent to declare that the instrument is definitively either 'in-tolerance' or 'out-of-tolerance'.

LIMITATIONS OF USE

This is a limited, or partial-range calibration, and accordingly, this thermometer may be used with confidence only within the range bracketed by the test points. The calibrated range for this thermometer is effectively from 33 to 35 °C.

MEASUREMENT UNCERTAINTY

The measurement uncertainty reported is the expanded uncertainty at 2 sigma (k=2), to provide a confidence level of approximately 95%.

The uncertainty is calculated considering both Type A and Type B contributors. Type A contributors include the standard deviation of the measurement process from check standard control charts, comparator uniformity, the standard deviation of monthly Triple Point of Water calibrations of the standard, and UUT variability observed during the calibration. Type B contributors include the uncertainty of the calibration of the reference standard, standard conduction and other immersion effects, the sensitivity and accuracy of the reference standard thermometer's readout, resolution of the standard and resolution of the UUT.

The Type A and B contributors are combined using the root-sum-square method to obtain the standard uncertainty at 1 sigma. The standard uncertainty is then multiplied by 2 to obtain the expanded uncertainty at 2 sigma (k=2). This uncertainty calculation is consistent with the requirements of the ISO Guide to the Expression of Uncertainty in Measurement (the 'GUM') and NIST Technical Note 1297.

The expanded uncertainties (k=2) reported here do not contain estimates for (1) any effects that may be introduced by transportation of the instrument between ICL and the user's facility, (2) drift of the instrument, (3) hysteresis of the instrument, or (4) any measurement uncertainties introduced by the user.

NOTES AND SUPPLEMENTAL INFORMATION

All temperatures given in this report are those defined by the International Temperature Scale of 1990 (ITS-90).

IMPORTANT NOTE: The correct operation of digital electronic thermometers is dependent upon all components functioning properly. Correct temperature indication may be impeded by physical damage to the sensor or cable assembly, contamination of electrical contacts or components by water, oil or other contaminants, or by other, less obvious causes such as low battery level or failure of internal components. Accordingly, ICL Calibration Laboratories, Inc. represents that the calibration data provided in this report were those values observed during the performance of this calibration, however cannot be responsible for inaccurate readings which may be experienced in future uses due to conditions or circumstances which are beyond our control.
TRACEABILITY INFORMATION

This calibration is traceable to the International System of Units (the SI, or Système international d'unités) through NIST, via an unbroken chain of comparisons. Our primary temperature reference are NIST calibrated SPRTs (Standard Platinum Resistance Thermometers), used exclusively for the calibration of our secondary reference PRTs, which in turn are used to calibrate our clients' instruments. Measurement uncertainty, which increases at each comparison in the chain, has been calculated at each step and is fully documented.

ICL maintains three NIST calibrated Rosemount model 162CE 25.5 Ohm SPRTs, for redundancy and to permit sequential rotation to NIST for calibration. As of this date, traceability from -40 to 200 °C (-40 to 392 °F) is conveyed through S/N 5058, MTE-262, which was calibrated by NIST on March 25, 2019. Traceability below -40 °C (-40 °F) and above 200 °C (392 °F) is conveyed through S/N 5369, MTE-358, calibrated by NIST on May 28, 2015. Secondary reference PRTs and other working standard thermometers are calibrated at least annually against these reference SPRTs, per NIST GMP-11 recommendations, and are monitored continually using measurement assurance strategies including check standards, control charts, and documented monthly verifications at the triple point of water.

The comparators and working standards used in the performance of this calibration are indicated below, organized by test point.

<table>
<thead>
<tr>
<th>Nominal Temp</th>
<th>Calibration method</th>
<th>Comparator</th>
<th>Serial No</th>
<th>MTE No</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.000 °C</td>
<td>Comparison w/PRT</td>
<td>PP15R water bath</td>
<td>1B13C0895 414</td>
<td>PolyScience</td>
<td></td>
</tr>
<tr>
<td>34.000 °C</td>
<td>Comparison w/PRT</td>
<td>PP15R water bath</td>
<td>1B13C0895 414</td>
<td>PolyScience</td>
<td></td>
</tr>
<tr>
<td>35.000 °C</td>
<td>Comparison w/PRT</td>
<td>PP15R water bath</td>
<td>1B13C0895 414</td>
<td>PolyScience</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal Temp</th>
<th>Standard ID / Mfr. / Model / Serial</th>
<th>Readout ID / Mfr. / Model / Serial</th>
<th>Next Due</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.000 °C</td>
<td>MTE-374 Fluke 5628-15 PRT 2521</td>
<td>MTE-396 Fluke 1595A B45115</td>
<td>05/06/20</td>
<td>Standard</td>
</tr>
<tr>
<td>33.000 °C</td>
<td>MTE-375 Fluke 5628-15 PRT 2603</td>
<td>MTE-396 Fluke 1595A B45115</td>
<td>05/06/20</td>
<td>Check Standard</td>
</tr>
<tr>
<td>34.000 °C</td>
<td>MTE-374 Fluke 5628-15 PRT 2521</td>
<td>MTE-396 Fluke 1595A B45115</td>
<td>05/06/20</td>
<td>Standard</td>
</tr>
<tr>
<td>34.000 °C</td>
<td>MTE-375 Fluke 5628-15 PRT 2603</td>
<td>MTE-396 Fluke 1595A B45115</td>
<td>05/06/20</td>
<td>Check Standard</td>
</tr>
<tr>
<td>35.000 °C</td>
<td>MTE-374 Fluke 5628-15 PRT 2521</td>
<td>MTE-396 Fluke 1595A B45115</td>
<td>05/06/20</td>
<td>Standard</td>
</tr>
<tr>
<td>35.000 °C</td>
<td>MTE-375 Fluke 5628-15 PRT 2603</td>
<td>MTE-396 Fluke 1595A B45115</td>
<td>05/06/20</td>
<td>Check Standard</td>
</tr>
</tbody>
</table>

TECHNICIAN: CHRIS KELLY

ICL CALIBRATION LABORATORIES, INC.

ICL Calibration Laboratories, Inc. is accredited to ISO/IEC 17025 & ANSI/NCSL Z-540-1 by the A2LA, Certificate #526.01, Calibration.

Approved by: [Signature]
Reviewed by: [Signature]

Date report issued: 10-11-2019

NIST GMP-11 (September 2014), 'Good Measurement Practice for Assignment and Adjustment of Calibration Intervals for Standards’ cautions that, ‘Temperature standards are dynamic with use. Shock, contamination and other factors can cause drift from accepted values’. GMP-11 recommends an initial calibration interval of 12 months for digital thermometers, standard thermistors and PRTs.

The user should be aware that any number of factors may cause this instrument to drift out of calibration before the specified calibration interval has expired.

This calibration report may not be reproduced except in full without the express written permission of ICL Calibration Laboratories, Inc.

This report applies only to the item calibrated. This calibration report shall not be used to claim product endorsement by the A2LA.

End of Report No. C263302